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NUMERICAL SIMULATION OF PLASMA MOTION

IN A MAGNETIC FIELD. TWO-DIMENSIONAL CASE

UDC 517.958:537.84V. T. Astrelin,1 V. M. Kovenya,2 and T. V. Kozlinskaya3

A model of dynamics and heating of a plasma cloud in a magnetic field is considered in a two-
temperature approximation. Based on a predictor–corrector-type implicit difference scheme, spreading
of a plasma cloud in an external magnetic field is numerically simulated, and the influence of this
field on spread dynamics is evaluated.
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Introduction. In experiments on plasma heating and confinement in a multiple-mirror trap in a GOL-3
setup, rapid heating of the plasma can be ensured by using a relativistic electron beam. Experiments demonstrated
that the electron component of the plasma is heated under conditions of a developed Langmuir turbulence suppress-
ing electron-type heat conduction. Rapid heating of ions in the plasma to a temperature commensurable with the
electron temperature is observed thereby. This heating can be attributed to a collective character of ion acceleration
under the gradient of the electron pressure of the plasma rather than to electron–ion collisions [1, 2]. To study the
above-described mechanism of fast transfer of energy from electrons to ions, Arzhannikov et al. [3] and Astrelin
et al. [4] modeled the dynamics of a two-component plasma in a one-dimensional hydrodynamic approximation by
different numerical methods. Numerical and experimental results show that plasma motion under these conditions
is accompanied by emergence of high-amplitude nonlinear waves. This required a special numerical method to be
developed [4, 5], which would be stable in a wide range of plasma parameters and sufficiently accurate for solving
problems of this class.

A refined two-dimensional model is proposed in the present paper to describe the motion of a one-fluid
two-temperature plasma with allowance for the effects of heat conduction, electrical conduction, thermal forces,
and friction forces arising in collisions between ions and electrons. A predictor–corrector-type implicit difference
scheme was proposed for the numerical solution of magnetohydrodynamic problems in one-dimensional and multi-
dimensional approximations [5, 6]. This model is extended below to the case of a two-temperature plasma. The
problem of spreading of an originally spherical hot plasma cloud under the action of hydrodynamic forces and a
magnetic field is solved. At the present stage of research, dissipative effects are neglected, but it is assumed that
the initial ion and electron temperatures may be different. The influence of an external magnetic field and initial
temperature distribution within wide ranges of their values on the characteristics of plasma motion is studied.

Physicomathematical Model. The problem of propagation of a dense plasma cloud in an external
magnetic field is considered. The original plasma cloud is assumed to have a spherical shape and to have parameters
(pressure, density, and temperature) whose values are several orders higher than the background level. Under the
action of hydrodynamic and magnetic pressures, this cloud starts spreading over the background plasma. The
flow is assumed to be axisymmetric and is simulated as propagation of a plasma cloud in a certain volume in the
presence of an external magnetic field. In the magnetohydrodynamic approximation, the system of equations of
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plasma motion contains equations of continuity, motion, magnetic field, and thermal balance for electrons and ions;
in the vector form, the system is [6]

∂n

∂t
+ div (nv) = 0, min

dv

dt
= −∇p+

1
c

(j × B),

1
γ − 1

n
dTi

dt
+ pi div v = − div qi +

3me
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dTe
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+ pe div v = − div qe +

j2

σ
+
j2⊥
σ⊥

+
1
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miτe
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(1)

∂B
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en
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n
− c rot

( j

σ
+

j⊥
σ⊥

)
.

Here d/dt = ∂/∂t+ (v · ∇), t is the time, n and v are the plasma density and velocity, Te and Ti are the electron
and ion temperatures, B is the magnetic field vector, c is the velocity of sound, e is the electron charge, me and
mi are the electron and ion masses, qi and qe are the ion and electron fluxes defined by the relations

qi = −κ
i∇ Ti − κ

i
⊥∇⊥Ti +

5
2
cpi

eB
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2
cpe

eB
(h ×∇Te) + 0.71peu − 3

2
pe

ωeτe
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h = B/B is the unit vector along the magnetic field, κ
i = 3.9piτi/mi, κ

e = 3.16peτe/me, κ
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⊥ = 2piTe/(miω
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i τi),

and κ
e
⊥ = 4.66pe/(meω

2
eτe) are the longitudinal and transverse thermal conductivities for ions and electrons,

j = (c/(4π)) rotB is the current density, ωi,e = eB/(mi,ec) are the cyclotron frequencies of electrons and ions,
a = h(a ·h) and a⊥ = h× (a×h) are the components of the vector a, which are parallel and perpendicular to the

magnetic field, u = − 1
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of electrons and ions, σ1 = 9 · 1012/(λ/10), σ = 1.96σ1T
3/2
e , and σ⊥ = σ1T

3/2
e are the electrical conductivities, λ is

the Coulomb logarithm: λ = 23.4− 1.15 log n+ 3.45 log Te for Te � 50 eV and λ = 25.3− 1.15 log n+2.3 log Te for

Te > 50 eV; RT = −0.71n∇ Te − 3
2

n

ωeτε
(h×∇Te) is the thermal force.

System (1) is closed by the equation of state in the form

pe = nTe, pi = nTi, p = pe + pi (2)

and by the relation

div B =
1
r

∂

∂r
(rBr) +

∂Bz

∂z
= 0. (3)

The flow is assumed to be symmetric with respect to the angular coordinate, i.e., ∂/∂ϕ = 0. The solution of the
equations is independent of the angular coordinate but contains all components of velocity and magnetic field in
the directions of the cylindrical coordinate system z, r, and ϕ.

For convenience of numerical simulation and analysis of results, Eqs. (1) can be written in dimensionless
form by setting the length L, velocity U0, magnetic field B0, plasma density n0, and temperature T0 as dimen-
sionless parameters. The sought functions are the plasma density, velocity components, ion and electron pressures,
and magnetic field components. Then, system (1)–(3) in the cylindrical coordinate system can be presented in
dimensionless form as
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ψ0 = ψ(jzhϕ − jϕhz); ψ1 = ψ(jϕhr − jrhϕ);

j0 = jrhr + jϕhϕ + jzhz; j1 = sj0;

κ
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;

a1 = jhr + ψ0; a2 = j1hz + ψ1; b1 = −j1hr + ψ0; b2 = −j1hz + ψ1;

μrr = σ1(k1h
2
r − 1); μϕϕ = σ1(k1h

2
ϕ − 1); μzz = σ1(k1h

2
z − 1);

μrϕ = k1σ1hϕhr; μrz = k1σ1hrhz; μϕz = k1σ1hϕhz.

The boundary conditions are set as follows. At the initial time, the background values of the plasma in the
entire computational domain, except for the plasma cloud of diameter d, are

n = 1, vr = 0, vϕ = 0, vz = 0,

pe = pe,in, pi = pi,in, Br = 0, Bϕ = 0, Bz = 1,
(5)

and the background values in the plasma cloud with
√
r2 + z2 � d are

n = ncl, vr = 0, vϕ = 0, vz = 0,

pe = pe,cl, pi = pi,cl, Br = 0, Bϕ = 0, Bz = 1.
(6)

The calculations were normally performed until the disturbances from the cloud reached the boundaries
[otherwise, soft boundary conditions (outflow conditions) were set at these boundaries]. The solution of the problem
was found for the upper half-plane; hence, by virtue of the problem symmetry, the following conditions were set at
the axis r = 0:

∂n

∂z
= vr = vϕ =

∂vz

∂z
=
∂pe

∂z
=
∂pi

∂z
=
∂Br

∂z
= Bϕ =

∂Bz

∂z
= 0. (7)

The solution of Eqs. (4) with the boundary conditions (5)–(7) was found numerically by a predictor–corrector
difference scheme [5] with splitting in terms of the spatial directions and special splitting of one-dimensional operators
in terms of the physical processes. Let us briefly describe the principles of constructing this scheme for system (4)
without dissipative terms. Let us write system (4) as a differential scheme in conservative form:

∂U

∂t
= W , W = −

2∑
j=1

∂Wj

∂xj
(8)

(U and Wj are the vectors of the sought functions and fluxes in the direction xj ; x1 = z and x2 = r). Then, we
write this system in nondivergent form with respect to the vector of the sought functions f :

∂f

∂t
+

2∑
j=1

Bj
∂f

∂xj
= 0. (9)

Here f = (n, vz, vr, vϕ, pe, pi, Bz, Br, Bϕ)t; Bj are the differential matrix operators in each spatial direction. We
introduce splitting of one-dimensional matrix operators into a sum of matrices of simpler structure Bj = B1

j +B2
j

so that the difference scheme for the split equations
∂f

∂t
+Bi

j

∂f

∂xj
= 0 (i, j = 1, 2)

is implemented by effective algorithms (e.g., scalar sweeps for each component of the vector f), and additional
terms of the form Bl

j ·Bs
j (s �= l) arising owing to splitting have a minimum number of nonzero elements [5]. Then,

system (9) can be presented as
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where the matrices Bi
j in the cylindrical coordinate system (x1 = z, x2 = r) are
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B2
2 =

⎛
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.

We approximate the first derivatives ∂/xj by difference operators Λj with an order O(hk
j ). We introduce

difference operators Bl
jhΛj = Bl

j + O(hk
j ) approximating the corresponding difference operators with an order k.

Then, for α = 0.5 +O(τ), the predictor–corrector difference scheme

fn+1/8 − fn

τα
+B1

1hΛ1f
n+1/8 = 0,

fn+1/4 − fn+1/8

τα
+B2

1hΛ1f
n+1/4 = 0,

fn+3/8 − fn+1/4

τα
+B1

2hΛ2f
n+3/8 = 0, (10)

fn+1/2 − fn+3/8

τα
+B1

2hΛ2f
n+1/2 = 0,

Un+1 − Un

τ
+

2∑
j=1

ΛjW
n+1/2
jh = 0

approximates the original equations (8) in divergent form with an order O(τ2 + hk
1 + hk

2). The structure of the
split matrices Bl

j was chosen so that the system of difference equations (10), like the scheme developed in [6], at
each fractional step could be solved by scalar sweeps for each component of the vector fn+l/8 (by eliminating other
components of the vector from this equation). Note that the number of scalar sweeps in each spatial direction
in scheme (10) is not greater than the number of the original equations. At the corrector stage, the scheme is
implemented explicitly. A linear analysis of stability shows that the difference scheme (10) is absolutely stable if
the above-described form of splitting is chosen. The calculations supported the theoretical estimates of stability,
which allowed us to vary the scheme parameters (time and space steps of the grid) and physical parameters of the
problem within wide limits in the numerical experiments.

Results of Numerical Simulations. Using the difference scheme (10), we calculated the problem of
spreading of a plasma cloud. By virtue of problem symmetry, we calculated only 1/4 of the domain. In the
first series of calculations, we set a pressure jump pe,cl = pi,cl = 103pin, which was three orders greater than the
background pressure, in the region r0 =

√
r2 + z2 � 0.1. We considered propagation of the plasma cloud with time

for different values of the magnetic field (different values of MA) and initial ion and electron temperatures. The
numerical solution was found by scheme (10) with a weight parameter α = 0.505 on computational grids containing
100 or 200 nodes in each spatial direction. Figure 1 shows the plasma spread at the time t = 0.3 for different
values of ncl. Under the action of the initial pressure gradient, the cloud starts spreading, and two density waves

406



0.5 0.5

0

50

1.0 1.0

n

rz

à

0.5 0.5

0

4

2

1.0 1.0

n

rz

c

0.5 0.5

0

1

1.0 1.0

n

rz

e

0.5 0.5

0

0.5

1.0 1.0 rz

pe

f

0.5 0.5

0

1.0

0.5

1.0 1.0 rz

pe

d

0.5 0.5

0

1,0

1.0

0.5

1.0 rz

pe

b

Fig. 1. Distributions of density (a, c, and e) and electron pressure (b, d, and f) for ncl = 1000 (a and b),
100 (c and d), and 10 (e and f); t = 0.3 and MA = 0.

are formed. A region with reduced density (of the order of the background plasma density) and pressure several
orders lower than the pressure of the background plasma is formed inside the cloud. The smaller ncl, the faster the
plasma spread and the lower the plasma density in the center of this region.

Subsequent calculations were performed to study the influence of the magnetic field on propagation of the
plasma cloud for different values of MA. The magnetic field was directed along the z axis; as a consequence, the
magnetic pressure gradient was directed along the radius, which should lead to plasma-cloud compression in the
radial direction. Figure 2 shows the plasma spread at the time t = 0.2 for ncl = 1000 and different values of MA. As
the magnetic field becomes stronger (MA increases), the plasma spread in the radial direction becomes less intense
than that in the longitudinal direction. At M2

A = 30, the plasma spread is almost terminated, and the cloud is
divided into two parts moving along the z axis. The amplitudes of density and pressure increase substantially, and
the spread velocity in the z direction is independent of the magnetic field. Figure 3 shows the plasma spread at the
time t = 0.15 for M2

A = 5 and different values of ncl. The greater the value of ncl, the slower the plasma spread
and the lower the plasma density in the center of the region.
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Fig. 2. Distributions of density (a, c, and e) and electron pressure (b, d, and f) for M2
A = 5 (a and b),

15 (c and d), and 30 (e and f); t = 0.2 and ncl = 1000.

In the next series of calculations, we studied the influence of nonuniform initial distributions of the electron
and ion temperatures on propagation of the plasma cloud into the background plasma. As the equations of motion
and magnetic field depend only on the total pressure or the sum of the electron and ion temperatures [see Eq. (2)]
rather than on their individual values, the main laws of motion of the plasma cloud also depend only on the summed
values of these temperatures. The magnetic field distribution is plotted in Fig. 4.

It follows from Fig. 4 that a magnetic well arises in the center of the cloud. The time of equalization of the
ion and electron temperatures in the plasma cloud from their different initial distributions depends substantially
on the parameter k = k00n/σ, i.e., on the “time between collisions” of electrons. For k00 = 8.2, this time is 0.2,
and for t � 0.2 the plasma can be considered as one-fluid and one-temperature. Figure 5 shows the distributions
of the electron and ion temperatures on the radial axis (z = 0) versus the parameter k00. The greater the value
of k00, the faster the electron and ion temperatures become equalized, after which the plasma can be considered as
one-fluid and one-temperature.
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Fig. 3. Distributions of density (a, c, and e) and electron pressure (b, d, and f) for ncl = 1000 (a and b),
100 (c and d), and 10 (e and f); t = 0.15 and M2

A = 5.

The results of the present calculations offer an adequate description of the physics of the phenomenon under
study and are in good qualitative and quantitative agreement with available results of physical and numerical
experiments [1–5, 8].

The theoretical analysis and calculations performed confirm the efficiency of the numerical algorithm pro-
posed and the software tools developed on the basis of this algorithm. Hence, it can be used for solving more
complicated problems of plasma spreading in a magnetic field with allowance for heat conduction and a finite
conductivity of the plasma.

This work was supported by the Russian Foundation for Basic Research (Grant No. 05-01-00146).
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